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LETTER TO THE EDITOR 

Berry’s phase and the planar three-body problem 

Yihren Wu 
Department of Mathematics, Hofstra University, Hempstead, NY 11550, USA 

Received 18 October 1988 

Abstract. Berry’s angular 2-form is seen as a correction to the symplectic structure in a 
separation-of-variables-type scheme, where the variables are canonically non-separable. 
This view is applied to the planar three-body problem where the rotational and vibrational 
motions are not separable. It is shown that the corrected symplectic structure gives the 
correct quantisation. 

Berry’s phase (Berry 1984) has received considerable attention in dealing with multi- 
parameter quantum dynamical systems. Simon (1983) pointed out the geometrical 
significance of the Berry phase as a holonomy to a connection on the solution line 
bundle over the parameter space. Let X be the configuration space, E the adiabatic 
parameter space and Hb the (B-dependent) Hamiltonian on X ,  with eigenvalues 
non-degenerate for each b and varying smoothly with b. Fix a branch of eigenvalues, 
the eigenfunctions ? b (  q )  forming a Hermitian line bundle over the base space B, with 
connection induced by the adiabatic transport. Berry’s phase is the holonomy of this 
connection. Various generalisations have been made; Wilzchek and Zee (1984) studied 
the situation of degenerate eigenvalues whose eigensubspaces are representation spaces 
of a Lie group of symmetry. Aharonov and Anandan (1987) extend the case to 
non-adiabatic processes. The dynamical meaning of this phase is discussed in Kuratsuji 
and Iida (1985). In classical dynamical systems Berry’s phase is seen as a shift in the 
angular coordinates on the invariant tori (Berry 1985), using the action-Hannay angle 
coordinates, as the system is adiabatically transported along a closed curve in B. The 
adiabatic assumption is removed in subsequent work of Berry and Hannay (1988). It 
is implicit in their work that a principal bundle over B with invariant tori as fibres is 
being considered, and the phase shift is again a holonomy of a connection on this 
bundle. The classical analogue of the curvature form is termed angular 2-form by 
Berry, the phase shift is given in terms of this form. The dynamical meaning of this 
form is given by Gozzi and Thacker (1987) who viewed it as a symplectic form on the 
parameter space. 

Independent of the development resulting from Berry’s observation, in studying 
the classical dynamics of molecular motion, Guichardet (1984) proved the non-separa- 
bility of rotation and vibration motions using connection theory. Here the base space 
E is the internal configuration space. A detailed study of the planar three-body problem 
was given by Iwai (1987). In particular, a quantisation was prooposed which takes 
into account this non-separability, 

We summarise our work as follows. Using the techniques of symplectic geometry 
and geometric quantisation (Sniatycki 1980), we will show that Berry’s angular 2-form 
is a 2-form on E induced by the symplectic form on the phase space T*X (the cotangent 
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bundle on X ) ,  thus turning B into a 'symplectic manifold' susceptible to quantisation. 
Moreover, if the parameter space B is itself a phase space (i.e. it has a symplectic 
form of its own), then the efective symplectic form is the sum of the two, in a sense 
that the correct quantisation should be carried out with respect to this form. In a 
suitable setting, we show that the curvature of Guichardet and Iwai is the angular 
2-form of Berry, and the quantisation of Iwai is the geometric quantisation with respect 
to the effective canonical form. We mention here that the classical Berry's phase is 
an Abelian gauge theory ([SO(2)]" acting on invariant tori) which does not lend itself 
to non-Abelian generalisations. The work of Guichardet and Iwai arise from the 
method of reduction (Marsden and Weinstein 1974, Kummer 1981), which is applicable 
for any compact Lie group symmetry. This immediately gives the classical analogue 
of Wilzchek and Zee. However, since it involves technicalities of a different kind, we 
will report on it in a separate paper. 

Since the adiabatic approximation method closely resembles that of separation of 
variables, we may consider the connection form of Berry as an adjustment term in a 
separation-of-variables scheme. Let M and B be two symplectic manifolds and p and 
IT be projections from M x B to M and By and assume their symplectic forms are 
exact and denoted by flM = d a M ,  a, = d a B  respectively. Let 4 :  M x B+[W be the 
actions, j = 1 , . . . , n = f dim M and let E = {( m, b)l4 = constant for each j }  be a subset 
of M x B. Assume, by restricting to a subset of B if necessary, that E projects onto 
B under IT. Thus we have the following diagram: 

E 

where E is a principal bundle over B with group G = [SO(2)]" and the G-action is 
generated by the Hamiltonian vector fields VI,. Let 

f fA(m,  b,  = r*p*aM(m, b )  
r 

=   IT)-" J exp( tjV;p*a,) exp( tj'V,,(m, b ) )  dtj 
w - ' ( b )  

be a 1-form on E, the angular 2-form being given by 

f l ~ ( b ) = d a ~ ( I I Z ,  b) .  (2) 
Here p*  denotes the pull-back operator and IT* denotes the averaging operator over 
the fibre  IT-'(^), which is clearly independent of m E T- ' (b ) .  It has an effect of a 
push-forward operator. So the angular 2-form flA is the symplectic form flM on M 
transferred onto B via E as a pull back and a 'push forward' on the diagram. One 
notes here that pushing forward of contravariant objects has recently become of interest 
in integral geometry (Guillemin 1987). The 1-form aA is related to the angular phase 
shift by 

as one traverses along the closed curve y. By an abuse of notation, the connection 
form for this phase shift is 

-E (a/ar,)"Aej (4) 

where the e, form a basis for the Lie algebra of [SO(2)]" = R". 
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The sum R B + R A = R . , "  need not be a non-degenerate 2-form. It is nonetheless 
viewed as a 'symplectic' form on B firstly because it is induced by R M  as above, and 
secondly due to its quantisation as follows. The quantisation procedure is carried out 
in two stages. Let H :  M +R be the classical Hamiltonian function. The first stage 
involves quantisation with the B coordinates fixed, let Hb : M + R be the restriction of 
H. Denote by ZM the prequantisation line bundle and by 2(Hb) the quantum operator 
of the observable Hb, and choose for each b, *b : M + a solution to the equation 
2 (&)* = A (b)". (Here we ignore the f-form bundles and other technical details 
concerning geometric quantisation.) The second stage involves quantising a vector 
field "Ir (the adiabatic evolution) on B, considered as a vector field on M x B .  The 
prequantisation line bundle ZB is the solution line bundle over B described in our 
introductory comments, considered as a sub-bundle of 5 f M x B ,  sections on ZB being 
of the form f (  b)"b. Choose a polarisation 9, the covariant constant condition along 
"Ir E 9 being 

o =  "Ir(f(b)qb)+i("IrJ a~)f(b)*b 

= * b y $ (  b ) + f (  b ) "Ir* b + i( "Ir 1 (YB)f( b )q b 

=qb"Irf(b)+f(b)("Ir A db*b)+i("Ir A aB)f(b)*b 

"Irf(b)s["Ir A (*by db*b)lf(b)+i("Ir A a B ) f ( b )  

( 5 )  

where J is the pairing between forms and vector fields. Using orthonormality of v b ,  
where ( ,) denotes the Hilbert space inner product on ZM we get 

o =  "Irf(b)+i["IrA (aB-ii(qb, db*b))]f(b) 
(6 )  

= "Irf( b )  + i[ "Ir J ( a ~  + a A ) ] f (  b).  

This is equivalent to quantisation of the trivial line bundle B x C with respect to the 
connection l-form aB + aA, aA being the Berry connection as formulated by Simon 
and CIA its curvature. (Here we use the same symbol for Berry forms in both the 
classical and quantum setting, their expressions appearing the same (Berry 1985).) 

The configuration space for the planar three-body problem is R2xR2xR2 for the 
positions of the three particles with symmetry SO(2) acting on the copies of R2 in the 
usual manner. Following Iwai, we use the centre of mass coordinates (x, , x2, x3, x4) E 
x = R ~ \ o :  

x1 + i  x2= [ m , m , / ( m , +  m , ) ~ ~ ' ~ ( z ,  -z3) 

x3 + ix, = [ m2( m ,  + m2+ m 3 ) / (  m ,  + m3)]1'2z2 

where z, E C = R2 is the position of the ith particle and m, is its mass. 
We assume the three vectors z, are in general position, and P m,z, = 0. The phase 

space is T*X with canonical coordinates (e ' ,  f 2 ,  f 3 ,  e4, x, , x2, x3, x4), canonical 1-form 
8' dx, and symplectic form de' dx, as usual. Notice that the induced SO(2) action on 
X is the usual action of R4 = R2 x R2. This gives rise to a symplectic action on T*X. 
This phase space plays the role of M x B discussed in the previous section. Here A4 
and B denote the phase space for the rotation dynamics and the dynamics of internal 
configurations respectively, which we now describe. 

Let Y = X / S 0 ( 2 )  be the internal configuration space and B = T* Y the phase space 
for the dynamics of the internal configuration. To separate the rotation and internal 
coordinates on X ,  we introduce ( r, , r 2 ,  e+,  e - )  with x1 + ix2 = rl exp i( e+ + 8-)/2] and 

(7) 
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x3 + ix4 = r, exp i( e+ - 0-)/2]. X is naturally projected onto Y by ( rl , r2 ,  e+, e-) + 

( rI , r2, e-). We will not be concerned with the fact that these are defined only locally. 
Let ( p l ,  p , ,  p + ,  p- , rl , r,, e+, e-) be the canonical coordinates on T*X and define r. 
T*X+ T* Y by ( p l ,  p 2 ,  P+,  P-, r l ,  rz, e+, 0-1 -+ ( p 1 , p 2 ,  P-, r l ,  r,, 6-1. Switching to 
the coordinates (yl , y2 , y 3 )  on Y given by Iwai, r : T*X + T* Y is defined by 

yl = (x2)2- (x3)' - (x4)2 = (r1)'- (r2)* 
y2 = 2(-x1x4+xzx3) = 2r1r2 sin 8- 

y3 = 2(xlx3 + ~2x4) = 2rl r, cos 8- 

2((x((2$ = gx1+ t 2 X 2  - t 3 X 3  - t 4 X 4  

2 1 1 ~ 1 l ~ ~ ~ =  --t1x4+ 52x3+t3x2-54x1+ I Y ~ Y ~ / [ ( Y ~ ) ~ +  (y3I21 

211~11~r1~ = t1x3+52x4+53x1 + ~ 4 x x 2 - ~ ~ l ~ z / [ ( ~ 2 ) 2 + ( ~ 3 ) 2 1  
where (Ix11'= ( r l ) Z + ( r 2 ) 2 =  Ilyll, ~j is the dual coordinate of y j ,  and I = 
t2x,  - ['x, + 5*x3 - 53x4 = 2p+.  

Let 

q:x-+s' q = arg z1 + arg z2+ arg z3 

be the rotation angle. Thus a curve y ( t )  in T*X is rotationless if (d/dt)[q(y(t))] =O.  
The total angular momentum p : T*X -+ R is the dual variable of q. We define p : T*X -+ 

T*S', p ( [ ,  x) = ( p ,  4). T*S' plays the role of M. 
Let V be a vector field on T*Y, V# an equivariant vector field on T*X whose 

projection r *V# = V. V#  is rotationless if 

(9) 

pV"(q) = V #  J p * p  dq = 0. (10) 

One easily checks, using equivariance, that V #  J r * p * p  dq = 0. Thus 

LYA = IT*P*P dq = NO 

= N I ~ x  Il-'(xl d ~ 2  - ~2 dxl - ~3 dx4 - ~4 dx3) (11) 

where o is the connection form given by Iwai. The normalisation term can be computed 
using the generator of the SO(2) action (i.e. the Hamiltonian vector field V, of 
I = f2x1 - t1x2 + t4x3 - t3x4) and we have 

N = VI 1 Nu = V, J r * p " p  dq = I (12) 
using 

p dq = 2rI .  f v - ' ( b )  

To summarise, we have r , p * p  dq = IO = p+(dO++yl(ly((-' de-). The effective l-form 
on T*Y is 

a;* = 77' dy, +/.~+y~llyll-~ do-. (14) 

We are now in a position to quantise observables on T* Y, with respect to U;* and 
the vertical polarisation. This can be done easily by introducing a non-canonical 
transformation ,y : T* Y + T* Y, ,y( 7, y)  = (i, y) defined by 

(15) 
6' = 7i2= 7)2-IYlY3/211YII[(Y2)2+(Y3)21 

i'= r13+ ~YlY2/211YII[(Y,)2+(Y3)21 
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where I is treated as a constant. A straightforward calculation shows that ,y*af= 
{J dy,, so the usual Schrodinger quantisation rule applies to the non-canonical variables 
{j+id/dy,. There will be an extra term (the vector potential) in quantisating the 
canonical variables 7'. 

Given a rotation-invariant potential U on T*X, the (classical) Hamiltonian function 
F ( x ,  6) =+11611'+ U ( x )  is expressed in terms of the non-canonical coordinates as 

F(Y, 6) =~11Yl l l l r j112+~2/~11Yl l+  U(Y) .  (16) 

2 ( F )  = - 2 1 1 Y I I v Y + ~ 2 / 2 1 1 Y l l +  U ( Y )  (17) 

The quantum Hamiltonian becomes 

where V y  is the Laplace operator on Y. This is the quantisation given by Iwai. 
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